Halogen bonds as orthogonal molecular interactions to hydrogen bonds.

نویسندگان

  • Andrea Regier Voth
  • Patricia Khuu
  • Keita Oishi
  • P Shing Ho
چکیده

Halogen bonds (X-bonds) are shown to be geometrically perpendicular to and energetically independent of hydrogen bonds (H-bonds) that share a common carbonyl oxygen acceptor. This orthogonal relationship is accommodated by the in-plane and out-of-plane electronegative potentials of the oxygen, which are differentially populated by H- and X-bonds. Furthermore, the local conformation of a peptide helps to define the geometry of the H-bond and thus the oxygen surface that is accessible for X-bonding. These electrostatic and steric forces conspire to impose a strong preference for the orthogonal geometry of X- and H-bonds. Thus, the optimum geometry of an X-bond can be predicted from the pattern of H-bonds in a folded protein, enabling X-bonds to be introduced to improve ligand affinities without disrupting these structurally important interactions. This concept of orthogonal molecular interactions can be exploited for the rational design of halogenated ligands as inhibitors and drugs, and in biomolecular engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supramolecular Cl⋅⋅⋅H and O⋅⋅⋅H interactions in self-assembled 1,5-dichloroanthraquinone layers on Au(111).

The role of halogen bonds in self-assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5-dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and squar...

متن کامل

Visualizing Halogen Bonds in Planar Supramolecular Systems

Supramolecular interactions were studied in two planar model systems, 1,5and 2,6-dibromoanthraquinones, prepared on Au(111) using scanning tunneling microscopy. In both systems, we found rigid triangular structures that consisted of simultaneous halogen bonds and hydrogen bonds, as reported in protein-ligand complexes. We proposed molecular models that were well reproduced by first-principle st...

متن کامل

Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

Halogens are present in a significant number of drugs, contributing favorably to ligand-protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to...

متن کامل

Halogen bonds involved in binding of halogenated ligands by protein kinases.

Analysis of 664 known structures of protein kinase complexes with halogenated ligands revealed 424 short contacts between a halogen atom and a potential protein X-bond acceptor, the topology and geometry of which were analyzed according to the type of a halogen atom (X = Cl, Br, I) and a putative protein X-bond acceptor. Among 236 identified halogen bonds, the most represented ones are directed...

متن کامل

Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)

MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2009